
2024/05/20 19:56 1/9 A networking powerhouse

Alien's Wiki - https://wiki.alienbase.nl/

A networking powerhouse

QEMU, VDE and Dnsmasq

In another Wiki article I talk about using the virtualization software called QEMU as an Open Source
alternative to the commercial / closed source VMWare. QEMU needs a little help and tweaks of your
computer environment to give it some of the capabilities VMWare has. In this Wiki page I will show
you how to use the power of Linux software collaboration and setup a network environment where
you can use your Virtual Machine inside QEMU as if it were physically connected to your network.
Running a guest Operating System like MS Windows in the QEMU machine virtualizer on your
Slackware host is really cool, and for some people this is an opportunity to get away from the
requirement to have a Windows desktop running all the time. With QEMU's “user-mode” network
stack, the Guest OS has network access to the host computer and to the network beyond. When user-
mode network is activated, QEMU runs it's own internal DHCP server which provides a guest OS with a
single IP address if the Guest is configured to use DHCP.

However, when your networking demands are higher, user-mode networking just is not enough.
The drawback of user-mode networking is that is is based on the SLIRP protocol which does not allow
for UDP connections, plus it's outbound only, meaning that no one on your network, not even the Host
Operating System, will be able to connect to the Guest OS. This isolates the Guest and this might not
be desirable if you want to provide functionality on your network that is supposed to run inside QEMU.

Another example: you are running several QEMU virtual machines in parallel, and the Guest OS-es
need to communicate with each other - this is impossible with user-mode networking. To be truthful,
this was impossible until version 0.8.0 of QEMU. The 0.8.0 release was the first to support VLAN, an
elegant but limited way to connect multiple Guest OS-es to each other. But even with the vlan option
added, the Host OS will still not be able to connect to any of the Guests.
QEMU offers a slightly more advanced way of bridged networking using a tap device, so that two-way
communication between Host and Guests becomes possible, but the disadvantages of using a tap
device with QEMU are, that you have to setup a separate tap device for each Virtual Machine, and
root access (or sudo) is required for connecting the VM to the network device.

VDE

The solution is a small but powerful piece of software called VDE - which stands for Virtual Distributed
Ethernet. You can see VDE as the software incarnation of a hardware network switch plus attached
cables. Using the vde_switch and vde_plug programs you are able to create quite complex virtual
analogies of a network that can span several hosts, even across the Internet. Read the documentation
if you want to know more about this exciting product. For our limited purpose of enhancing the
network capabilities of the QEMU Virtual Machines, I will just point out that VDE configures a virtual
network for your QEMU Guests, and uses a single tap device to set it all up. You configure the tap
device as root (typically during the boot stage of your computer) after which no further root access is
required for the Virtual Machines to connect to the VDE “switch”.

Getting a VDE package

I have created a Slackware package for VDE that you'll find in my SlackBuilds repository. The package

https://wiki.alienbase.nl/doku.php?id=slackware:qemu
http://www.vmware.com
http://vde.sourceforge.net/
http://www.slackware.com/~alien/slackbuilds/vde/

Last update: 2007/11/30 21:42 slackware:vde https://wiki.alienbase.nl/doku.php?id=slackware:vde

https://wiki.alienbase.nl/ Printed on 2024/05/20 19:56

by the way installs a version of the example rc.vdenetwork script in it's doc directory.

DNSMasq

From the Dnsmasq homepage:
“Dnsmasq is a lightweight, easy to configure DNS forwarder and DHCP server. It is designed to
provide DNS and, optionally, DHCP, to a small network. It can serve the names of local machines
which are not in the global DNS. The DHCP server integrates with the DNS server and allows machines
with DHCP-allocated addresses to appear in the DNS with names configured either in each host or in a
central configuration file. Dnsmasq supports static and dynamic DHCP leases and BOOTP for network
booting of diskless machines.
Dnsmasq is targeted at home networks using NAT and connected to the internet via a modem, cable-
modem or ADSL connection but would be a good choice for any small network where low resource use
and ease of configuration are important.”

I could not have said it better myself. We will use dnsmasq to compensate for the loss of the QEMU-
internal DHCP Server (because we abandon user-mode networking). Note that a Slackware full-install
contains a dnsmasq package already, and a /etc/rc.d/rc.dnsmasq init script is installed
automatically, although it is not executable by default. If your machine already runs dnsmasq, you will
have to look at the rc.vdenetwork script in the last section and integrate the dnsmasq related
configuration into your existing setup. If you're not already running dnsmasq, you don't have to worry
about this rc.dnsmasq file that Slackware installed - we won't be using it.

Dnsmasq will pick up any existing network configuration information of your computer, by reading
/etc/hosts and /etc/resolv.conf and will use that information when it sends DHCP
configuration to the QEMU Guest. If your computer has a functioning network connection to the LAN
and/or the Internet, your QEMU Guest(s) will enjoy the same functionality. Furthermore, by examining
your computer's message log /var/log/messages you will be able to determine what IP address
the QEMU Guest picks up, and you can use that knowledge to ssh into the Virtual Machine or point a
web browser to a running Apache server inside the VM - or connect to whatever other network service
that you enabled on your VM.

Tying it all together

This section documents how to combine the functionality of vde, dnsmasq and iptables and achieve
what we set out to do: have better, no-fuss networking functionality for QEMU.

How it works

First of all, we load the “tun” driver which is a kernel module that you should have enabled for
your kernel. Slackware kernels have this tun module, if you compile your own kernels, make
sure you configure

CONFIG_TUN=m (Device Drivers - Network device support -> Universal
TUN/TAP device driver support)
CONFIG_IP_NF_CONNTRACK=m (Connection tracking)
CONFIG_IP_NF_IPTABLES=m (IP tables support)

http://thekelleys.org.uk/dnsmasq/doc.html

2024/05/20 19:56 3/9 A networking powerhouse

Alien's Wiki - https://wiki.alienbase.nl/

CONFIG_IP_NF_NAT=m (Full NAT)

Instead of building these as modules, you can of course compile them into the kernel by
changing the 'm' to 'y'. Also, the device /dev/net/tun needs to exist. On my Slackware
system it is created automatically when I run

modprobe tun

(or let the rc.vdenetwork init script below load the module). If your system does not
automatically create that device file, you should create it yourself:

mkdir /dev/net
mknod /dev/net/tun c 10 200
chmod 660 /dev/net/tun

The tap0 interface is used by the program vde_switch which will do all the hard work of
managing the virtual network connections of the VM's that connect to it through the TAP device.
So we start vde_switch:

vde_switch -tap tap0 -daemon

and we will allow any user program to connect to and use the control socket:

chmod -R a+rwx /var/run/vde.ctl

Then we configure the resulting tap0 network interface with an IP address. The QEMU Virtual
Machines that you'll be running will all be available on a subnetwork that is “behind” this tap0
device.

ifconfig tap0 10.111.111.254 broadcast 10.111.111.255 netmask
255.255.255.0

The TCPIP configuration values I used in this example are arbitrary - you may choose whatever
you like, as long as you pick an address within a subnet range that is not used on your local
network. The Virtual Machines you are going to be running will all be in the IP subnet defined by
the tap0's IP address and netmask. The tap0 will act as the default gateway for that subnet.

Traffic to and from the subnet behind the tap0 interface must be forwarded

echo "1" > /proc/sys/net/ipv4/ip_forward

and since we are most probably setting up all of this on an ordinary workstation, we don't want
to cause network disruption by suddenly announcing the birth of a new network segment. We
will “hide” the tap0 interface and our QEMU/VDE subnet behind a firewall, by applying couple of
NAT iptables rules. Tus, we designate the eth0 interface as the external firewall interface (in the
example I use eth0 - your external interface might be called different).

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Last update: 2007/11/30 21:42 slackware:vde https://wiki.alienbase.nl/doku.php?id=slackware:vde

https://wiki.alienbase.nl/ Printed on 2024/05/20 19:56

We've setup the foundation now, and need to finish by starting dnsmasq to have a DHCP/DNS
server in case the QEMU Guest OS needs these:

/usr/sbin/dnsmasq \
 --log-queries \
 --user=named \
 --dhcp-leasefile=/var/state/dhcp/qemu-dhcpd.leases \
 --dhcp-
range=10.111.111.129,10.111.111.199,255.255.255.0,10.111.111.255,8h \
 --interface=tap0 \
 --domain=qemu.lan

This is quite a long command line, but don't worry - if you're going to use that example

rc.vdenetwork script below, you don't have to type it all the time What this does, is
setup a range of IP addresses to be used for DHCP. These addresses are all in the subnetwork
range defined by the IP address of the tap0 interface. The command will enable the DHCP
server only on the internal tap0 interface so that the external eth0 (or whatever) interface is not
affected. You could seriously mess up your network if suddenly a second DHCP server started
feeding weird IP addresses to the computers in your LAN (assuming you do have a DHCP server
in the LAN of course - most households with Cable/DSL internet run a DHCP server on their
Internet router).

We're done! If you're running a 2.4 kernel and get the following warning message when starting
QEMU:

Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a
fatal
error, but for better emulation accuracy either use a 2.6 host Linux
kernel
or type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.

you'll have to do just that: run

echo 1024 > /proc/sys/dev/rtc/max-user-freq'

as root.

Implementation

To activate your VDE powered virtual ethernet expansion every time the computer boots, you add an
init script to Slackware's /etc/rc.d directory and make sure the script gets called when Slackware
starts. The last section contains a script that you can save as /etc/rc.d/rc.vdenetwork. This
script will perform all the stuff I talked about just now, setting up everything you need to combine the
functionality of QEMU, VDE and dnsmasq.

Use the example in the last section to create a file that you call /etc/rc.d/rc.vdenetwork.
Edit the file to make sure that it meets your requirements (see a few lines below for an
explanation of the variables and values used):

2024/05/20 19:56 5/9 A networking powerhouse

Alien's Wiki - https://wiki.alienbase.nl/

vi /etc/rc.d/rc.vdenetwork
chmod +x /etc/rc.d/rc.vdenetwork

The second command will make the script executable, so that we can call it from rc.local.

Add the following lines to the file /etc/rc.d/rc.local:

if [-x /etc/rc.d/rc.vdenetwork]; then
 # echo "VDE network: /etc/rc.d/rc.vdenetwork start"
 /etc/rc.d/rc.vdenetwork start
fi

and Slackware will run the rc.vdenetwork script for you next time you boot the machine.

Important variables in the /etc/rc.d/rc.vdenetwork script that you might want to examine
and modify before running it for the first time (extracted from the script below):

TAP_DEV=tap0 # The name of the TAP interface you'll use
TAP_IP=10.111.111.254 # The IP address you want to give to the
TAP device
TAP_MASK=255.255.255.0 # The TAP device's netmask
VM_IPLOW=10.111.111.128 # The start IP address of DNSmasq's DHCP
range
VM_IPHIGH=10.111.111.199 # The end IP address of DNSmasq's DHCP
range
 # The VM_IPLOW an VM_IPHIGH addresses must
all lie within
 # the same IP subnetwork, defined by
TAP_IP and TAP_MASK
VM_DOMAIN=qemu.lan # DNSmasq will create a DNS domain for
your Virtual Machines.
NAT_IFS="eth+" # Any other interface(s) present in the
host computer
 # that should be configured as external
NAT interfaces.
 # If you have a eth0 and wlan0 device, you
could use
 # NAT_IFS="eth0 wlan0". The plus sign in
"eth+" means
 # "all network interfaces starting with
'eth'"
DNSMASQ_OPTIONS="" # Any other options you want to pass to
dnsmasq.

You can now reboot, or if you don't want to reboot, just run

/etc/rc.d/rc.vdenetwork start

We're all set! It is time to start your QEMU session and see if it all works as expected! I have
provided another script in the last section of this article as an example of how to run QEMU and

Last update: 2007/11/30 21:42 slackware:vde https://wiki.alienbase.nl/doku.php?id=slackware:vde

https://wiki.alienbase.nl/ Printed on 2024/05/20 19:56

have it using VDE for the networking.

Example scripts

Save this code as /etc/rc.d/rc.vdenetwork

#!/bin/sh
QEMU/VDE/DnsMasq environment preparation script
--
-
#
After running this startup script, run a QEMU virtual machine in this way:
#
vdeqemu [qemu_option [qemu_option], ...]
#
The vdeqemu program will automatically connect
the QEMU virtual machine to the VDE switch.
#
--
-

The IP configuration for the tap device that will be used for
the virtual machine network:

TAP_DEV=tap0
TAP_IP=10.111.111.254
TAP_MASK=255.255.255.0

TAP_BCAST=`/bin/ipmask ${TAP_MASK} ${TAP_IP} | cut -f 1 -d ' '`

Host interfaces that need to be NAT-ed (in case we're not bridging):
NAT_IFS="eth+"

Definitions for the LAN segment the Qemu virtual machines will be in.
These definitions will be fed to dnsmasq - this program will provide DNS
and DHCP to the Qemu LAN.

The VM_IPLOW and VM_IPHIGH addresses must agree with the definitions for
the tap0 device above. These 'low' and 'high' values are the IP address
range for the DHCP server to use.

VM_DOMAIN=qemu.lan
VM_IPLOW=10.111.111.128
VM_IPHIGH=10.111.111.199
VM_BCAST=${TAP_BCAST}
VM_MASK=${TAP_MASK}

For additional options to dnsmasq:
#DNSMASQ_OPTIONS="--server /my.net/192.168.1.1"

2024/05/20 19:56 7/9 A networking powerhouse

Alien's Wiki - https://wiki.alienbase.nl/

DNSMASQ_OPTIONS=""

See how we were called.

case "$1" in
 start)
 echo -n "Starting VDE network for QEMU: "

 # Load tun module
 /sbin/modprobe tun 2>/dev/null
 # Wait for the module to be loaded
 while ! /bin/lsmod |grep -q "^tun"; do echo Waiting for tun
device;sleep 1; done

 # Start tap switch
 vde_switch -tap ${TAP_DEV} -daemon

 # Bring tap interface up
 ifconfig ${TAP_DEV} ${TAP_IP} broadcast ${TAP_BCAST} netmask
${TAP_MASK}

 # Start IP Forwarding
 echo "1" > /proc/sys/net/ipv4/ip_forward
 for NIC in ${NAT_IFS}; do
 iptables -t nat -A POSTROUTING -o ${NIC} -j MASQUERADE
 done

 # Change pipe permission (vde2 uses a different pipe directory)
 if vde_switch -v | grep -q "^VDE 1" ; then
 chmod 666 /tmp/vde.ctl
 else
 chmod -R a+rwx /var/run/vde.ctl
 fi

 # If we are not running 2.6, apply workaround
 if uname -r | grep '^2.4'; then
 echo 1024 > /proc/sys/dev/rtc/max-user-freq
 fi

 # Start dnsmasq, the DNS/DHCP server
 # for our Virtual Machines behind the tap0 interface
 /usr/sbin/dnsmasq \
 --log-queries \
 --user=named \
 --dhcp-leasefile=/var/state/dhcp/qemu-dhcpd.leases \
 --dhcp-range=${VM_IPLOW},${VM_IPHIGH},${VM_MASK},${VM_BCAST},8h \
 --interface=${TAP_DEV} \
 --domain=${VM_DOMAIN} \
 $DNSMASQ_OPTIONS
 echo
 ;;

Last update: 2007/11/30 21:42 slackware:vde https://wiki.alienbase.nl/doku.php?id=slackware:vde

https://wiki.alienbase.nl/ Printed on 2024/05/20 19:56

 stop)
 echo -n "Stopping VDE network for QEMU: "
 {
 # Delete the NAT rules
 for NIC in ${NAT_IFS}; do
 iptables -t nat -D POSTROUTING -o ${NIC} -j MASQUERADE
 done
 # Bring tap interface down
 ifconfig ${TAP_DEV} down
 # Kill VDE switch
 pgrep -f vde_switch | xargs kill -TERM
 # Remove the control socket
 rm -f /tmp/vde.*
 rmdir /var/run/vde.ctl
 # Stop dnsmasq
 pgrep -f dnsmasq | xargs kill -TERM
 } >/dev/null 2>&1
 echo
 ;;
 restart|reload)
 $0 stop
 sleep 1
 $0 start
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|reload}"
 exit 1
esac

A script that you can use to start QEMU, connect it to the vde_switch, and have sound in the VM is
presented here. Note that if you run more than one QEMU session, the Virtual Machines will see each
other on the network provided by the VDE switch. This means that all of them must have unique MAC
addresses. Since QEMU will assign the same MAC address to each VM by default, we will have to pass
each QEMU instance it's own MAC Address. So, for running multiple QEMU powered VM's, you'll have
to create multiple copies of the following script (or think up some magic to generate unique MAC
addresses). Actually, I also provide this same example script on the QEMU Wiki page. The example
assumes you want to run Windows XP, so that explains the comments and the naming of the various
files used. You can run anything you want inside the QEMU VM or course, QEMU won't care.

#!/bin/sh
#
Start Windows XP Pro in QEMU using VDE for better network support

PARAMS=$*

Qemu can use SDL sound instead of the default OSS
export QEMU_AUDIO_DRV=sdl

Whereas SDL can play through alsa:
export SDL_AUDIODRIVER=alsa

https://wiki.alienbase.nl/doku.php?id=slackware:qemu

2024/05/20 19:56 9/9 A networking powerhouse

Alien's Wiki - https://wiki.alienbase.nl/

Change this to the directory where _you_ keep your QEMU images:
IMAGEDIR=/home/alien/QEMU

Change this to the directory where _you_ keep your installation CDROM's
ISO images:
ISODIR=/home/alien/ISOS

Now, change directory to your image directory
cd $IMAGEDIR

If you want to boot from the WinXP CD add a '-boot d' parameter to the
commandline;
if you don't need the CDROM present in the VM, leave '-cdrom
${ISODIR}/winxp_pro_us.iso' out:
I made the MAC address up - make sure it is unique on your (virtual)
network.

This command returns to the command prompt immediately,
and QEMU's (error) output is redirected to logfiles.
vdeqemu -net vde,vlan=0 -net nic,vlan=0,macaddr=52:54:00:00:EE:02 -m 256 -
localtime -soundhw all -hda winxp.img -cdrom ${ISODIR}/winxp_pro_us.iso
1>winxp.log 2>winxp.err ${PARAMS} &

From:
https://wiki.alienbase.nl/ - Alien's Wiki

Permanent link:
https://wiki.alienbase.nl/doku.php?id=slackware:vde

Last update: 2007/11/30 21:42

https://wiki.alienbase.nl/
https://wiki.alienbase.nl/doku.php?id=slackware:vde

	[A networking powerhouse]
	A networking powerhouse
	QEMU, VDE and Dnsmasq
	VDE
	Getting a VDE package

	DNSMasq
	Tying it all together
	How it works
	Implementation

	Example scripts

