2025/10/22 18:16 1/19 Configuring your network in Slackware

Configuring your network in Slackware

This article is intended as a reference guide to network card configuration in Slackware.

The network scripts themselves are well-documented (inside the scripts) but there is not much other
written end-user documentation about what you put into the configuration files. The Network
Configuration chapter in the Slackware Linux Essentials book explains in generic terms how
Slackware's network configuration works, and how the use of DHCP (dynamic IP address assignment)
differs from static IP's. | will try not to repeat what is written there.

There is another nice and freely available book on Slackware, called Slackware Linux Basics. This book
should be considered as required follow-up reading material once you mastered the Slackware
Essentials. The networking chapter is well worth reading.

In essence, my Wiki article documents the /etc/rc.d/rc.inetl. conf file. The only available
documentation about the configurable network parameters used to be at the bottom of that file, and
it took the shape of commented-out examples. In Slackware 12.2 two man pages were added, for
rc.inetl and rc.inetl.conf, both of which are based on this Wiki article.

The rc.inetl script in Slackware configures all your network interfaces - including wireless
interfaces. If the rc.inet1 script detects that it deals with a wireless interface, it will call the sub-
script rc.wireless to configure this interface's wireless properties. Both scripts take their
configuration information from the same file rc.inetl. conf.

| wrote a separate chapter about Wireless Networks because a wireless network interface has so
many more configurable parameters than a “wired” interface. The configuration of WPA encryption a
for wireless interface is documented in it's own chapter; the WPA parameters are taken from the file
/etc/wpa supplicant.conf instead of the rc.inetl. conf file.

The final section of this article looks at alternative network configuration managers (who usually come
with a GUI based client program) that have become available for Slackware over time.

| will also try to give some historic perspective on the evolution of network support in Slackware,
because | was involved in this a lot.

History

| have been dabbling with Slackware's network support for a long time now. My interest started when
| became an IBM employee and was exposed to a Token Ring network (which is the type of network
infrastructure that IBM was known for, as opposed to Ethernet which was what the rest of the world
was using). Token Ring interfaces are called tro0, trl, etc...
Now, you may remember if you have used Slackware long enough that the network device
configuration script /etc/rc.d/rc.inetl had the name “eth” hard-coded. Slackware supported
four network interfaces out of the box: they had to be called eth0, ethl, eth2 and eth3. This meant
that | had to patch the script to add support for my Token Ring cards. | had to repeat this patching
procedure for every computer | installed Slackware on (even at IBM, | could use Slackware because |
deployed these as local servers for groups of developers in the office). At some point this became
quite tedious, so | approached Pat Volkerding and asked him if he would incorporate my patch into
the Slackware scripts (at the source). Pat was very friendly (of course) but also would not use my
o0
patch for quite some time (of course

It would take as long as Slackware 10.2 to support network cards out of the box whose name did not

Alien's Wiki - https://wiki.alienbase.nl/

http://slackbook.org/html/network-configuration-tcpip.html
http://slackbook.org/html/network-configuration-tcpip.html
http://slackbook.org/html/
http://slackbasics.org/html/
http://slackbasics.org/html/netconfig.html
http://slackware.osuosl.org/slackware-12.2/source/n/network-scripts/manpages/rc.inet1.8
http://slackware.osuosl.org/slackware-12.2/source/n/network-scripts/manpages/rc.inet1.conf.5

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

start with “eth” ...

Also in Slackware 10.2, the capability was added to start/stop/restart every individual interface
instead of the “all or nothing” approach of the earlier rc.inet1l script. See also the section
(re)starting a network interface

These patches were fairly non-intrusive, but adding support for wireless network interfaces would be a
lot more complicated.

Historically, the pcmcia subsystem already supported (wired as well as) wireless cards for some time,
but these cards with a 16-bit PCMCIA interface were typically configured using the
/etc/pcmcia/network.opts and /etc/pcmcia/wireless.opts files. The introduction of
wireless PCCard (which is essentially 32-bit PCI with a PCMCIA interface) and PC/ devices demanded a
new approach. Support for these cards would have to he added to the rc.inet1l script.

The first release of Slackware to have support for PCl and PCCard wireless network cards was 10.0.
The script /etc/rc.d/rc.wireless was added. It takes care of configuring the wireless
parameters for a network interface. This script does not run independently (although the original
version of Slackware 10.0 would not complain if you did). Instead, it is executed by the generic
network configuration script /etc/rc.d/rc.inetl. Note that this happens for every network
interface which is being initialized - wired as well as wireless. The rc.wireless script will return
control to rc.inetl immediately if it determines that the interface has no wireless capabilities.

If a wireless interface is detected, rc.wireless will use iwconfig, iwpriv and possibly
wpa_supplicant to associate the card with an access point (in managed mode) or peer it with
another computer (in ad-hoc mode). When the script completes it's work, it hands back control to the
rc.inetl script which continues with the (DHCP or static) IP address assignment.

If you remove the executable bit from this script, it will never be run. This can be beneficial if you
have written your own wireless script and don't want Slackware to mess it up.

LO] The /etc/rc.d/rc.wireless script is not meant to be run on it's own by the user!

Typically, wireless network cards are assigned a name different from ethN (wlanN, raN and athN are
common names) Before the release of Slackware 10.2, these cards could not easily be configured
using the standard network configuration files. Support for arbitrary network interface names (other
than ethN) was added in Slackware 10.2, which made the process of configuring wireless interfaces a
lot easier.

We are going to assume here that you are running Slackware 10.2 or newer.

Most people with wireless cards will be better off with a recent release

like Slackware 12.1 anyway.

For older releases, there are instructions in an other Wiki article about updating the network
scripts.

The first versions of the rc.wireless script relied on a configuration file
/etc/rc.d/rc.wireless.conf for all of your wireless card's configuration. Starting with
Slackware 10.2, it is also possible to use the generic configuration file /etc/rc.d/rc.inetl. conf
to store wireless parameters.

Support for WPA encryption (using wpa_supplicant) was also added, although it would take until
Slackware 11.0 before a wpa_supplicant package was actually added to the /testing directory. In
Slackware 12.0, wpa_supplicant finally became part of the 'N' package series.

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

https://wiki.alienbase.nl/doku.php?id=slackware:madwifi#network_configuration_the_manual_way_slackware_101_and_older
https://wiki.alienbase.nl/doku.php?id=slackware:madwifi#network_configuration_the_manual_way_slackware_101_and_older

2025/10/22 18:16 3/19 Configuring your network in Slackware

Network subsystem

Slackware's network subsystem is straight-forward. A network device will be used by Slackware only if
Slackware finds the minimally required configuration data. Most important: it must be known if the
card will use DHCP to obtain an IP address or that a static IP address will be used. Additionally for a
wireless interface it is good to have configured it's wireless parameters.

So, how does Slackware load drivers for, configure and activate a network interface?

e Automatically at boot time
At boot time, the UDEV sub-system probes your hardware and based on the information it
receives, loads a kernel module (or several). The feedback it receives from the kernel together
with the UDEV rulesets, determine how the hardware is configured and activated. For network
interfaces, the script /etc/udev/rules.d/90-network. rules determines the actions. The
UDEV rule file in turn runs the script /lib/udev/nethelper.sh with the name of the
interface (which was created by the kernel as the driver loaded) as a parameter. It checks on
how far the boot has progressed. Activating the network must not happen too soon because
some required directories (/var for instance) may not yet be mounted if they are not on the root
partition. But ultimately, the nethelper. sh script will run the following command for any
interface called INTERFACE (ethQ, ethl, ath0O, wlan0, you get it):

/etc/rc.d/rc.inetl INTERFACE start

which will configure, then activate, the network interface with that name. But only if you added
the required information to the configuration file /etc/rc.d/rc.inetl.conf !

UDEV will also ensure that your network interface will always keep the name it initially got. As
an example, think about what happens if you have a eth0 interface and then you add an extra
network card to the computer. This new card could get detected before the old one and this
would result in the kernel assigning eth0 to the new card, leaving ethl for the old card. To
prevent this mix-up of names, UDEV uses the script /etc/udev/rules.d/75-persistent-
net-generator.rules to create a file /etc/udev/rules.d/70-persistent-net.rules
with lines that look like this:

This file was automatically generated by the

/lib/udev/write net rules

program run by the persistent-net-generator.rules rules file.

#

You can modify it, as long as you keep each rule on a single line.

PCI device 0x8086:0x10le (el000)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
ATTR{address}=="00:0d:60:b1:b9:43", ATTR{type}=="1", NAME="ethO"

PCI device 0x168c:0x1014 (ath pci)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="7?*",
ATTR{address}=="00:05:4e:47:7c:28", ATTR{type}=="1", NAME="athO"

You see here, that a card's MAC address defines the interface name it will keep getting as long
as this file exists. You can safely delete the file if you think there is something wrong with the
naming of your network interfaces (like in the case where you cloned your Slackware system to
use it on another computer or in a Virtual Machine) because UDEV will just create a new file

Alien's Wiki - https://wiki.alienbase.nl/

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

with correct informations the next time you boot the computer.

¢ Pre-defined at boot time
If UDEV does not detect your card, or if you do not use UDEV, or if you just want to make sure
that your card's driver is loaded always, you can create a file by the name of
/etc/rc.d/rc.netdevice and add modprobe command(s) there that load the driver for your
card. A typical modprobe line would look like this:

/sbin/modprobe 3c59x
Do not forget to make that file executable!
chmod +x /etc/rc.d/rc.netdevice

After UDEV has had it's chance to detect hardware, the Slackware initialization script
/etc/rc.d/rc.Mwill run /etc/rc.d/rc.inetl once without parameters, ensuring that any
network interface will be configured that is available to the system and for which we have
configuration data, but still is in an unconfigured state (this includes the interface we created
with the use of the rc.netdevice file).

e Runtime
UDEV will also take care of dynamic additions and removals of hardware. This involves
networking hardware as well - think of wireless PCCard or USB devices. The same basic
procedure as described in the previous bullet pont applies here, with the addition that on
hardware removal, ultimately the following command will run:

/etc/rc.d/rc.inetl INTERFACE stop

which will de-activate the interface.

e User induced
You as the user can decide to stop, start or restart any network interface by directly running
one of the commands

/etc/rc.d/rc.inetl INTERFACE stop
/etc/rc.d/rc.inetl INTERFACE start
/etc/rc.d/rc.inetl INTERFACE restart

That last command will mostly be used after changing one or more of the interface's
configuration parameters like for instance the IP address, or the wireless encryption key.

Network configuration file rc.inetl.conf

e The file /etc/rc.d/rc.inetl. conf consists basically of a series of variable array definitions.
Array elements with the same index number will all belong to the same network interface. By
default, index number 0 is used for the configuration of interface eth0, index number 1 is used
for ethl and so forth. The default interface name can be overruled by the use of the variable
IFNAME.

This is what a typical section of the file looks like - | have selected every array variable with the
index number [0]:

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

2025/10/22 18:16 5/19 Configuring your network in Slackware

Config information for ethO:
IPADDR[O]=""

NETMASK[O]=""

USE DHCP[O]=""
DHCP_HOSTNAME[O]=""
DHCP_TIMEOUT[O]=""

This is information which is easily editable using something like vi or nano. And indeed, this is
how Slackware's network configuration is updated.

e But the initial configuration (usually during the installation of Slackware, but the command is
available on the running system as well) is done by running the script

netconfig

Unfortunately, the netconfig program only cares about the interface eth®, and the questions it
asks about your interface lack the one that goes “what is the name of the interface you use?” In
most cases, eth0 is indeed the network interface you are going to use. But especially where
wireless cards are involved, interfaces are called anything but ethN. There is an updated
version of netconfig in the making which supports arbitrary interfaces and wireless parameters
as well, but at the time | can give no estimate when this will go into the distribution.

configuration. For any other (including wireless) card's configuration, use vi

) Rule of thumb: use netconfig script only for your primary wired interface
.
/etc/rc.d/rc.inetl.conf instead

e The boot-time network configuration script /etc/rc.d/rc.inet1 will look for up to 6
interface definitions in rc.inetl. conf. This is usually enough, but in case you need to expand
this value, look for the line in /etc/rc.d/rc.inetl that says

MAXNICS=6

and change the number to a higher value.

Network configuration parameters

Here follows a list of network parameters you can set for any card. As an example I've taken the
section that is usually taken for eth@ i.e. the array variables with index [0]:

Config information for ethoO:

IPADDRI O |="" # Set this value to an actual IP address if
you want static IP address assignment

NETMASK| 0O [="" # With a static IP address, you are required
to also set a netmask (255.255.255.0 1is

common)

USE DHCP[0O|="yes" # If set to "yes", we will run a DHCP client

Alien's Wiki - https://wiki.alienbase.nl/

Last update: 2017/08/08 20:12

slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

assigned

DHCP_HOSTNAME [0 |="mybox"
register

DHCP TIMEOUT|O =15

IFNAME [0 |="ethO:1"
HWADDR[0 |="00:01:23:45:67:89"
MTU[O|=""

DHCP_KEEPRESOLV |0 |="yes"
overwritten
DHCP_KEEPNTP [0 |="yes"
DHCP_KEEPGW| 0 |="yes"

DHCP_IPADDR|[O|=""

H H K H K W KR

H H K B R

and have the IP address dynamically
Tell the DHCP server what hostname to

The default timeout for the DHCP client to
wait for server response 1s 30 seconds,

but you might want a shorter wait.

Set up an IP alias.

Overrule the card's hardware MAC address
The default MTU is 1500, but you might need
1360 when you use NAT'ed IPSec traffic.

If you dont want /etc/resolv.conf

If you don't want ntp.conf overwritten

If you don't want the DHCP server to change
your default gateway

Request a specific IP address from the DHCP
server

If you want your Slackware system to configure a network interface at boot time, you
will have to supply a value for exactly one of the following two variables:

IPADDR[O]="" # Needs an IP address like "192.168.0.12"
@ USE DHCP[O]="" # Needs the value of "yes" - anything else will

be ignored

If both variables are empty, the interface will not be configured and activated. If both
variables have values, then the interface will be configured for DHCP

Wireless Networks

If you have a Wireless Access Point that is broadcasting its station ID (the ESSID), and is not
configured for encrypted traffic, then you're ready to go with the default configuration as it comes
with Slackware. This kind of open wireless network is typical when

1. you just unpacked your Wireless Access Point, and didn't have time yet to configure it;
2. you are at an airport/hotel/pub where they offer free wireless access.

If you need to configure specific parameters to make the wireless card talk to your Access Point - for
instance, the ESSID (in case the Access Point is hiding its station ID), or the channel, or a WEP key,

etc) then you will need to edit either the file

/etc/rc.d/rc.wireless.conf

or the file

/etc/rc.d/rc.inetl.conf

https://wiki.alienbase.nl/

Printed on 2025/10/22 18:16

2025/10/22 18:16 7/19 Configuring your network in Slackware

(one of the two will do) and add a specific configuration that matches your wireless card and Access
Point.

Wireless configuration in rc.wireless.conf (deprecated)

In the previous section, | briefly mentioned the fact that you can store your wireless network
parameters (excluding WPA) in both rc.wireless.conf and rc.inetl. conf. | will show you how
touse rc.wireless.conf but first let me explain why | prefer to let people use rc.inetl. conf
instead.

Originally, rc.wireless.conf was the file to store your wireless parameters. When support for
wireless parameters was also added to rc.inetl. conf this was done with a reason.

The rc.wireless and rc.wireless. conf files were initially based on the pcmcia scripts for
wireless cards. That means your card's parameters were tied to it's MAC address (with the option to
use a wildcard in that MAC address to support different brands of cards). This is different from the
standard way of configuring a network card in Slackware, where network configuration parameters
are tied to the name of the interface. Adding the option to define your wireless configuration
parameters in rc.inetl. conf allows you to keep all your network settings (apart from WPA) in one
file: rc.inetl. conf. | can hear you think “what happens if | define a wireless parameter in both
files?”. Good question! In fact, a parameter value which is setin rc.inetl. conf will always override
the value you might have set for that same parameterin rc.wireless. conf.

| regularly hear from Slackware users that they are confused by the possibility to use two
configuration files for the same settings. Well, | agree. This rc.wireless.conf is a historic left-over
and ultimately | would like to see it removed from the Slackware wireless-tools package completely. |
think there is no good reason to want to keep using rc.wireless. conf. In fact, you can safely
delete that entire file! But for those who do not want to say goodbye to it, we will keep support for it
in the network configuration scripts.

to the wireless parameter called WLAN_FOO[n] in rc.inetl. conf (the [n] being the

) Any wireless parameter defined in rc.wireless.conf and called FOO is equivalent
i
index relating to your card). The WLAN _ prefix is what distinguishes the two.

(_ Please use /etc/rc.d/rc.inetl.conf as the single configuration file for all your
3 network parameters (wired as well as wireless)

Let us have a better look at this file anyway.

e rc.wireless.conf
You will notice that the content of /etc/rc.d/rc.wireless.conf is basically a number of
sections that apply to certain (ranges of) wireless network cards. The distinguishing factor is the
hardware address (the MAC address) of a card. A section for a specific card or range of cards
looks like this:

MAC Address)
INFO="a string that decribes your card type"
PARAMETER1="valuel"
PARAMETER2="value2"

Alien's Wiki - https://wiki.alienbase.nl/

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

[more parameters]

.
r

The MAC_Address in this example can be a full MAC address (six HEX bytes separated by
colons, like 00:12:8E:A0:32:DC) that matches a single network card, or a wildcard address
that matches a whole range of cards, typically all cards from a specific vendor (like
00:12:8E:A0:*),

If you intend to use rc.wireless.conf you will probably have to add such a section for your
specific card, and this is how to do it:

o If your wireless interface called wlan0, run ifconfig wlan0 to get the MAC address of
the card.

o Edit /etc/rc.d/rc.wireless.conf and comment out this section right in the
beginning of the file:

*)
INFO="Any ESSID"
ESSID="any"

r

so that it will look like this:

*)
INFO="Any ESSID"
ESSID="any"

r

H O R H

o Somewhere further below the lines you just commented out, add a few lines (easiest is to
add it to the very bottom of the file for instance, right above the esac line) that will
apply to your card, like these:

00:06:25:13:2B:D4)
INFO="D-LINK DWL-G510 revBl"
ESSID="your ap essid"
KEY="0100030203"

r

The first line is your card's MAC address followed by a ')', and the last line must only
consist of two semicolons - all by themselves (copy and paste one of the available
examples if you're unsure).

Your MAC address, ESSID, KEY and info comment are obviously going to be different from
the values in the above example.

Wireless configuration in rc.inetl.conf

e rc.inetl.conf
We covered this file earlier on in the wired section of this article. For wireless cards, it is a
matter of extending the parameter definitions of your card with the ones that relate to wireless.
All these parameters (or better, variables) start with the prefix WLAN_. The rc.inetl.conf
file which is installed by the network-scripts package has a lot of examples at the bottom.

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

2025/10/22 18:16 9/19 Configuring your network in Slackware

Let's go through a typical configuration of a wireless interface called athO.
o The first thing to do is define the interface name because it is different from the default
ethN. The variable IFNAME is used to define the interface name. You will need to add or

modify a few lines in /etc/rc.d/rc.inetl. conf in order to get a configuration like
this:

Config information for ath@ (using dhcp):
IFNAME[1]="athO"

IPADDR[1]=""

NETMASK[1]=""

USE DHCP[1]="yes"
DHCP_HOSTNAME[1]="mywirelessbox"

Or like this:

Config information for ath@ (using static IP address):
IFNAME[1]="athO"

IPADDR[1]="192.168.3.11"

NETMASK[1]="255.255.255.0"

USE DHCP[1]=""

DHCP_HOSTNAME[1]=""

GATEWAY="192.168.3.1"

These are example values of course and you will have to substitute your own.

o NOTE

In the above example, where | used the index 1, like in: VARIABLENAME[1], you may use
whatever index is not used for any other card that you may have installed. If you do not
have an ethQ interface for instance, you might as well want to use the unused 0 array
index. The last configuration example would then look like this:

Config information for ath@ (using static IP address):

IFNAME[0]="ath0"
IPADDR[0]="192.168.3.11"
NETMASK[@]="255.255.255.0"
USE_DHCP[O]=""
DHCP_HOSTNAME[0]=""
GATEWAY="192.168.3.1"

Obviously, any array index value ([0],[1],[2], ...) in /etc/rc.d/rc.inetl.conf should be used
for exactly one card's configuration. If you copy a set of lines, be sure to change the array
index to an unused value. If you forget this, and create a double entry, then Slackware

will happily forget about the first, and will use only the last value for any parameter found
in the file.

Keep the index value below 6 whenever possible. The rc.inet1 script will not look
for indexes larger than 6

Alien's Wiki - https://wiki.alienbase.nl/

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

e In order to get your network card connected, you will have to add one or more wireless
configuration parameters, like a WEP key, the ESSID, and such:

IFNAME[1]="athO"

WLAN MODE[1]=Managed
WLAN ESSID[1]="my access point"
WLAN KEY[1]="D5AD1F04ACFO48EC2D0OB1C80C7"

e Note that | deliberately used an ESSID (the access point's Station Set Identifier) which has
spaces in it. This requires that you use quotes around the name: “my access point”. When your
access point has a name without spaces, you do not need these quotes - in fact it is better to
leave those out: WLAN_ESSID[1]=Darkstar.

e NOTE about WEP encryption:

You may have defined your WEP key as a string of ascii characters (i.e. a readable passphrase
like “Hogwarts”) instead of a string of hexadecimal characters (like
“6CC07C36169B8E7524886F9A19"). If you want to use this readable string instead of typing a
series of HEX characters, you can use the following key format in rc.inetl.conf

WLAN KEY[1]="s:Hogwarts"

This is for a 128-bit (aka 104-bit) WEP key. The even weaker 64-bit (aka 40-bit) WEP keys are
still being used - in this case you would need to provide one of 4 keys (or all four with one of
them defined as active), this key would have to be the one that the access point considers
active as well. Suppose we want to set key [2] to the ascii value “Hogwarts” and then make this
the active key, this will take two iwconfig commands: “iwconfig key [2] s:Hogwarts”
and “iwconfig key [2]”. These commands can be combined into one: “iwconfig key

[2] s:Hogwarts key [2]” and the corresponding entry in rc.inetl.conf would become
(the first “key” word removed):

WLAN KEY[1]="[2] s:Hogwarts key [2]"
WEP key generators can be found all over the internet. A nice one is PowerDog's cgi script.

Using WPA encryption is recommended, see the section that comes next if you need to know
how to configure WPA encryption.

It depends on your access point and the quality of the signal (think of interference because of nearby
Access Points when you live in a densely populated area) whether you have to explicitly configure
parameters as the channel and the rate. Leaving these undefined will cause the driver to scan for the
appropriate channel and settle for a dynamic transmission rate.

Wireless configuration parameters

A comprehensive list of supported wireless parameters follows (taken from rc.inetl. conf):

IFNAME ="atho" # Use a different interface name instead of
the default 'eth4'
WLAN ESSID |4 |=DARKSTAR # Your access point's name

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

http://www.powerdog.com/wepkey.cgi

2025/10/22 18:16 11/19

Configuring your network in Slackware

WLAN_ MODE |4 |=Managed
WLAN RATE[4]="54M auto"
to try

variable)

WLAN CHANNEL 4 |="auto"
tuned

correct channel)

H*

#

#

"Managed" mode for use with Access Points.
"Ad-Hoc" is for peer-to-peer connections.
The transmission rates you want the driver
("auto" means that bandwidth can be

The channel to which the Access Point is

("auto" to let the driver find out the

WLAN KEY|[4]="D5A31F54ACF0487C2D0B1C10D2"

#

Definition of a WEP key

WLAN IWPRIV[4]="set AuthMode=WPAPSK | set EncrypType=TKIP | set

WPAPSK=thekey"

than

(1)

WLAN WPA[4]="wpa supplicant”
WLAN WPADRIVER|4|="ndiswrapper"

WLAN WPAWAIT 4 =30
association

before

#
#

H*

H OH R H H R

Some drivers require a private ioctl to be
set through the iwpriv command. If more

one 1s required, you can place them in the
IWPRIV parameter (separated with the pipe

character, see the example).

Run wpa supplicant for WPA support

Tell wpa supplicant to specifically use the
ndiswrapper driver. If you leave this empty
the 'wext' driver is used by default; most

modern wireless drivers use 'wext'

In case it takes long for the WPA

to finish, you can increase the wait time

rc.wireless decides that association failed
(defaults to 10 seconds)

various WLAN_ parameters that are available. These parameters translate directly

0 Read the iwconfig man page if you want to know more about the possibilities for the

into iwconfig commands

WPA encryption

WPA stands for Wi-Fi Protected Access. It is an encryption standard which was devised after it became
clear that the older WEP (Wired Equivalent Privacy) encryption algorhitm was seriously flawed - WEP
can be cracked in a matter of seconds. Note that WPA is not 100% safe either, but much harder to
crack than WEP. Just make sure that you use a non-trivial WPA passphrase to create your WPA key.
The WPA cracking methods that rely on dictionary attacks will eventually break through your
encryption if you use common words to make up your passphrase.

OK... configuring WPA encryption seems to be quite problematic for many people. But it is not hard at

Alien's Wiki - https://wiki.alienbase.nl/

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

all if you know where to configure! | am assuming that you already have your wireless card up and
running without any encryption, or possibly with WEP encryption - the way to do that was shown in
the previous section.

Do not try to add WPA support if you do not yet have a functional wireless network connection! It will
make the toubleshooting a lot more difficult if it does not work right away.

» To enable WPA support for your card, ensure that you installed the wpa_supplicant package (it
is part of a full Slackware install) and then open the file /etc/wpa supplicant.conf inan
editor - as root, because this file is protected from being seen by normal users. It should look
something like this:

ctrl interface=/var/run/wpa_supplicant
ctrl interface group=0
eapol version=1
ap_scan=1
fast reauth=1
network={
scan_ssid=0
ssid="your essid"
proto=WPA RSN
key mgmt=WPA-PSK WPA-EAP
pairwise=CCMP TKIP
group=CCMP TKIP
psk=your 64 hex characters long key

}

but you'll need to supply your own values for the ssid and the psk. The ssid is the same as the
ESSID you use in rc.inetl.conf. The pskis the Pre Shared Key.

e There is a way to generate the hexadecimal value for the PSK if you have an access point which
uses a passphrase. As root, run:

wpa_passphrase YOURSSID passphrase

with the YOURSSID being the ESSID of your Access Point and passphrase is the ascii string you
entered in the Access Point's WPA-PSK configuration section. You'll receive an output, which
looks like this:

network={

ssid="YOURSSID"

#psk="passphrase"
psk=04dffae0l172e3a255e5bab6f28ab78cc23d845f3dd8d4a63bab4a37555e2a33b

}

Next, you should copy the three lines that you find inside the network={} section of the
command's output and paste them inside the network={} section of the file
/etc/wpa_supplicant.conf. Do not forget to check the permissions of the configuration
file! The key that it contains should be protected from prying eyes.

chmod 600 /etc/wpa supplicant.conf

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

2025/10/22 18:16 13/19 Configuring your network in Slackware

e Now, if your network configuration for a wireless interface athO in rc.inetl. conf looked like
this at first:

Config information for ath® (using dhcp):
IFNAME[1]="athO"

IPADDR[1]=""

NETMASK[1]=""

USE DHCP[1]="yes"
DHCP_HOSTNAME[1]="mywirelessbox"

then you'd have to add two lines for WPA support so that it will read:

Config information for ath0® (using dhcp):
IFNAME[1]="athO"

IPADDR[1]=""

NETMASK[1]=""

USE DHCP[1]="yes"
DHCP_HOSTNAME[1]="mywirelessbox"

WLAN WPA[1]="wpa supplicant"

WLAN WPADRIVER[1]="wext"

The value “wext” for the variable WLAN_WPADRIVER stands for “Wireless Extensions”. It is the
protocol with which wpa_supplicant and the wireless driver communicate. Wireless Extensions
allow for a simple framework that connects arbitrary (and well-written) wireless kernel drivers
and the userland program wpa_supplicant together. Not too long ago, neither wpa_supplicant
nor wireless drivers used Wireless Extensions by definition, so it is likely that for older releases
of these sotwares, wpa_supplicant needs to talk to the driver using it's own protocol. You can
easily find out what “drivers” (cards) are supported by wpa_supplicant by just running it and
inspecting the output:

wpa_supplicant
wpa_supplicant v0.5.10
Copyright (c - , Jouni Malinen <j@wl.fi> and contributors

drivers:

wext = Linux wireless extensions (generic

hostap = Host AP driver (Intersil Prism2

atmel = ATMEL AT76C5XXx (USB, PCMCIA

ndiswrapper = Linux ndiswrapper

ipw = Intel ipw2100 driver (old; use wext with Linux 2.6.13 or
newer

wired = wpa supplicant wired Ethernet driver

For instance: If you use an older version of ndiswrapper you may have to use “ndiswrapper”
instead of “wext” as the driver (note that current releases of ndiswrapper require “wext”)

Alien's Wiki - https://wiki.alienbase.nl/

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

WLAN WPADRIVER[1]="ndiswrapper"

o After making the required changes to the configuration files, you can restart your wireless
network card (ath@) now, by running

/etc/rc.d/rc.inetl ath0 restart

Slackware will tell wpa_supplicant to use the “wext” protocol if you do not specify a
driver yourself. So, basically the line

\J) WLAN WPADRIVER[1]="wext"

can safely be omitted.

WPA2

WPA?2 is considered a safer encryption protocol than WPA. However, not all (older) wireless access
points support it because of the greater processing power the WPA2 protocol demands for the packet
encryption/decryption.

* The wpa_supplicant.conf example in the previous section will support WPA as well as WPA2
encrypted networks. In the following line taken from wpa supplicant.conf

proto=WPA RSN
the string WPA2 is an alias for RSN, so that that line can be written like this as well:
proto=WPA WPA2

* WPA2 support for the legacy RaLink drivers by serialmonkey is configured with an “iwpriv”
command like this (check the earlier section about rc.inetl.conf to see the difference with the WPA1
example given there):

WLAN IWPRIV[?]="set AuthMode=WPA2PSK | set EncrypType=AES | set
WPAPSK=the 64 character key"

WPA debugging

If your WPA connection does not activate, there are several ways to debug the problem. For the sake
of the examples | will assume that the name of your wireless interface is ath0 - substitute your own
card's name if you need to apply these commands.

e Debug the WPA authentication process.
Make sure the network interface is down (run

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

2025/10/22 18:16 15/19 Configuring your network in Slackware

/etc/rc.d/rc.inetl ath@ stop

to make sure). Start the wpa_supplicant daemon as a foreground process with additional
debugging enabled:

wpa supplicant -dw -c/etc/wpa supplicant.conf -Dwext -iath@
Then activate the network interface in another terminal. Run
/etc/rc.d/rc.inetl ath0O start

Look at the output of wpa_supplicant in the first terminal, it might give you pointers to look for a
solution.

e Get a run-time status overview of the supplicant:

As root, run

wpa_ cli status

to see the current status of wpa_supplicant's authentication process. If you have more than one
wireless interface that uses wpa_supplicant, you will have to specify the interface you want to

query:
wpa cli -i ath0® status

e Debug Slackwares network initialization.
Change

DEBUG_ETH UP="no"
to
DEBUG_ETH UP="yes"

in the file /etc/rc.d/rc.inetl.conf and look for logger messages that are being written to
/var/log/messages while the interfaces are configured. Maybe those messages will help you
trace your problem.

NOTE: with debugging enabled, Slackware will write your WEP/WPA keys to the message log as
well, in clear text!

e The WPA association might take a long time.
Start the interface again after a little time, this may help if it takes wpa_supplicant a long time
to associate (no restart, just a start):

/etc/rc.d/rc.inetl ath0O start

This “start” command will leave the still running wpa_supplicant process alone, so that a
possibly delayed association to an Access Point is not disrupted. If this makes your wirelesss
work, but the problem occurs quite often when you don't run this extra manual command, you

Alien's Wiki - https://wiki.alienbase.nl/

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

can change the 'wait' time for the WPA authentication process by editing the file
/etc/rc.d/rc.inetl.conf and adding the line

WLAN WPAWAIT[?]=30

or any other larger value that helps your particular setup.
NOTE: in the last line make sure that you replace the questionmark in [?] with the array value
that matches your wireless card configuration In the above example this array index would be
[1] and the actual linein rc.inetl.conf would look like

WLAN WPAWAIT[1]=30

If you set DEBUG_ETH_UP="yes” then you will notice messages in your
“/var/log/messages” file like this:

WPA authentication did not complete, try running '/etc/rc.d/rc.inetl
athO start' in a few seconds.

e The Access Point is not broadcasting the SSID.
Some succeed, some fail in getting WPA to work when the Access Point has a hidden SSID.
Check if your AP is broadcasting the SSID and if not, enable it. There is little point in hiding the
SSID anyway, because even with network encryption there will always be packets that need to
be transfered in the clear. One of the things that can not be encrypted is the ESSID! How else
can a wireless card find out that it talks to the right Access Point if it cannot read the ESSID.
Anyway, with WPA as a protection layer you should not be afraid of break-ins (as long as you do
not use easy-to-guess passphrases!!!

(Re) starting a network interface

In Slackware, the way to start your network (the configuration of your nics and bringing the interfaces
up, and creating a default route if required) is by running the command

/etc/rc.d/rc.inetl

Restarting the whole network is done in a similar fashion:

/etc/rc.d/rc.inetl restart

This is quite crude, and not adequate for the dynamic detection and configuration of network devices.
Therefore, when your computer boots, and UDEV detects your network hardware, it will run the

following command after loading the kernel driver and determining the name of the interface (let's
assume that it is wlanO0):

/etc/rc.d/rc.inetl wlan@ start

More generically speaking, you can start/stop/restart any network interface yourself by running one of
the commands

/etc/rc.d/rc.inetl INTERFACE start

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

2025/10/22 18:16 17/19 Configuring your network in Slackware

/etc/rc.d/rc.inetl INTERFACE stop
/etc/rc.d/rc.inetl INTERFACE restart

Alternative network managers

The information presented in the article up to here is historical and provides you with in-depth
information about how Slackware itself can manage your computer's network configuration.

However, with the advance of mobile computers and graphical desktops, alternative means of
managing network connectivity have been developed which allow for seamless roaming, VPN support
and other complex scenarios.

Several alternative network managers have been added to Slackware over time, and these come with
graphical front-end programs. This section of the article on networking in Slackware deals with the
alternatives.

networkmanager

The Networkmanager was added to Slackware 14.0. Originally developed by Red Hat, it is now hosted
by the GNOME project and has been adopted by virtually all Linux distributions.

NetworkManager is able to switch automatically between wired and wireless networks, allows VPN
connections of various types and supports modems.

Read more about NetworkManager on is homepage https://wiki.gnome.org/Projects/NetworkManager

The NetworkManager package installs a daemon which talks to your computer's dbus messagebus
to detect network connects/disconnects. The daemon is started at boot by making its rc script
executable:

chmod +x /etc/rc.d/rc.networkmanager

Configuration of your wireless as well as wired interfaces is done via a client program. You can either
use the GTK-based graphical network-manager-applet in your X Window session (KDE, XFCE,
blackbox, ...), or use the text user interface program nmtui if you are not using X. If you are running
KDE 4 as your Desktop Environment, then the package plasma5-nm will show a system tray widget.
If you are running Plasma 5 Desktop Environment, then plasma5-nm installs a Plasma widget for the
graphical management of NetworkManager. To enable that widget, right-click on the system tray and
select add widgets, then search for network and drag the widget to your system tray. Once the widget
is visible in your Plasma system tray you can use it to interact with the daemon.

If you want to use NetworkManager, you will have to remove any network interface
configuration information from /etc/rc.d/rc.inetl.conf in order to prevent a
struggle for power between NetworkManager and Slackware's rc.inetl script.

wicd

Wicd (pronounced as wicked) aims to provide a simple interface to connect to networks with a wide

Alien's Wiki - https://wiki.alienbase.nl/

https://wiki.gnome.org/Projects/NetworkManager

Last update: 2017/08/08 20:12 slackware:network https://wiki.alienbase.nl/doku.php?id=slackware:network

variety of settings. Some of Wicd's features include:

e Ability to connect to wired and wireless networks

Profiles for each wireless network and wired network

Many encryption schemes, some of which include WEP/WPA/WPA2
Remains compatible with wireless-tools

Tray icon showing network activity and signal strength

Read more about it here: http://wicd.net/

You can find the wicd package in the /extra section of the Slackware distribution. It is not installed
by default as part of a full installation.

Wicd installs a daemon which talks to your computer's dbus messagebus to detect network
connects/disconnects. The daemon is started at boot by making its rc script executable:

chmod +x /etc/rc.d/rc.wicd

Configuration of your wireless as well as wired interfaces is done via a wicd client. You can either run
the graphical wicd-client in your X Window session (KDE, XFCE, blackbox, ...), or use the console
program wicd-curses if you are not using X. If you are running KDE4 as your Desktop Environment,
then the package wicd-kde installs a KDE widget for the graphical management of your wicd
daemon. To enable the wicd widget, right-click on the system tray and select add widgets, then

search for wicd and drag the widget to your system tray. Once the widget is visible in your KDE
system tray you can use it to interact with the daemon.

If you want to use wicd, you will have to remove any network interface configuration
information from /etc/rc.d/rc.inetl.conf in order to prevent a struggle for
power between wicd and Slackware's rc.inet1 script.

Ixnm

Fix Mel

wifi-radar

Fix Mel

knetworkmanager

Do not use this. The KDE tools are not compatible with Slackware.

https://wiki.alienbase.nl/ Printed on 2025/10/22 18:16

http://wicd.net/

2025/10/22 18:16 19/19 Configuring your network in Slackware

From:
https://wiki.alienbase.nl/ - Alien's Wiki

Permanent link:
https://wiki.alienbase.nl/doku.php?id=slackware:network

Last update: 2017/08/08 20:12

Alien's Wiki - https://wiki.alienbase.nl/

https://wiki.alienbase.nl/
https://wiki.alienbase.nl/doku.php?id=slackware:network

	Configuring your network in Slackware
	History
	Network subsystem
	Network configuration file rc.inet1.conf
	Network configuration parameters

	Wireless Networks
	Wireless configuration in rc.wireless.conf (deprecated)
	Wireless configuration in rc.inet1.conf
	Wireless configuration parameters

	WPA encryption
	WPA2
	WPA debugging

	(Re) starting a network interface
	Alternative network managers
	networkmanager
	wicd
	lxnm
	wifi-radar
	knetworkmanager

